Skip to main content

Anaerobic Treatment System: A Sustainable Clean Environment and Future Hope of Renewable Energy Production

  • Chapter
  • First Online:
Cost-efficient Wastewater Treatment Technologies

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 118))

  • 587 Accesses

Abstract

Anaerobic digestion (AD) of organic wastes is a popular biological treatment method. It is a useful technology in waste management and environmental health especially for mitigating greenhouse gases (GHSs). It is an economic process that treats a wide range of low- to high-strength organic materials for the production of value-added products such as feed biobased products and bioenergy through a diverse group of microorganisms. Several anaerobic digestion systems have been widely employed to treat both domestic and industrial wastes before they are discharged into the environment. The application of anaerobic technologies is considered a significantly viable economically sustainable system for treatment of both solid and liquid wastes. Its benefits include removal of organic matter, high treatment efficiency, pathogens removal, production of renewable energy, capable of power generation at a low cost, and less biomass production. Nonetheless, this chapter is a review of the following: different anaerobic digestion systems in the treatment of waste products; the bioeconomic and social importance of using anaerobic reactor for biofuel production and methods of identification and quantification of microbial consortia in an anaerobic reactor. The review further highlights the role of different methanogens as the major group of archaea for biogas production. Other ways to increase biofuel generation are also explored. The chapter concludes that environmental and economic challenges in waste management and energy resource scarcity could be alleviated sufficiently using an anaerobic digestion system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Divya D, Gopinath LR, Merlin Christy P (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sust Energ Rev 42:690–699

    CAS  Google Scholar 

  2. Arfiana A, Finalis ER, Nurdin A (2020) Design of biogas cooling processing from pome for (CSTR) continuous stirred tank reactor system. Majalah Ilmiah Pengkajian Industri 14(2):137–144

    Google Scholar 

  3. Rajesh Banu J et al (2020) Biorefinery of spent coffee grounds waste: viable pathway towards circular bioeconomy. Bioresour Technol 302:122821

    CAS  Google Scholar 

  4. Singh SP, Prerna P (2009) Review of recent advances in anaerobic packed-bed biogas reactors. Renew Sust Energ Rev 13:1569–1575

    CAS  Google Scholar 

  5. Ward JA et al (2008) Optimisation of the anaerobic digestion of agricultural resources. Rev Bioresour Technol 99:7928–7940

    CAS  Google Scholar 

  6. Enitan AM (2015) Microbial community analysis of a UASB reactor and application of an evolutionary algorithm to enhance wastewater treatment and biogas production, PhD thesis

    Google Scholar 

  7. Kaparaju P, Serrano M, Angelidaki I (2010) Optimization of biogas production from wheat straw stillage in UASB reactor. Appl Energy 87(12):3779–3783

    CAS  Google Scholar 

  8. Karagiannidis A, Perkoulidis G (2009) A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes. Bioresour Technol 100:2355–2360

    CAS  Google Scholar 

  9. Kumaran P et al (2016) A review on industrial scale anaerobic digestion systems deployment in Malaysia: opportunities and challenges. Renew Sust Energ Rev 56:929–940

    CAS  Google Scholar 

  10. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67(1):3–28

    CAS  Google Scholar 

  11. Ryan P et al (2010) Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions. Water Res 44(14):4261–4269

    CAS  Google Scholar 

  12. Chong S et al (2012) The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment – a state-of-the-art review. Water Res 46(11):3434–3470

    CAS  Google Scholar 

  13. Cruz-Salomón A et al (2020) Treatment of cheese whey wastewater using an expanded granular sludge bed (EGSB) bioreactor with biomethane production. PRO 8(8):931

    Google Scholar 

  14. Newman N (2019) Unexpected ways factories are saving energy. Eng Technol 14(5):70–73

    Google Scholar 

  15. Rajagopal R et al (2010) Evaluation of a hybrid upflow anaerobic sludge-filter bed reactor: effect of the proportion of packing medium on performance. Water Sci Technol 61(6):1441–1450

    CAS  Google Scholar 

  16. Shao X et al (2008) Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresour Technol 99(8):3182–3186

    CAS  Google Scholar 

  17. Kaparaju P, Rintala J (2005) Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure. Resour Conserv Recycl 43(2):175–188

    Google Scholar 

  18. Diaz EE et al (2006) Phenotyic properties and microbial diversity of methanogenic granules from a full scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl Environ Microbiol 72(7):4942–4949

    CAS  Google Scholar 

  19. Parawira W et al (2005) A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochem 40:593–599

    CAS  Google Scholar 

  20. Zhou P et al (2006) Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes. J Environ Eng 132(1):129–136

    CAS  Google Scholar 

  21. Enitan AM et al (2014) Assessment of brewery effluent composition from a beer producing industry in KwaZulu-Natal, South Africa. Fresenius Environ Bull 23(3):693–701

    CAS  Google Scholar 

  22. IEA (2001) Biogas and more! Systems and markets overview of anaerobic digestion. International Energy Agency (IEA)

    Google Scholar 

  23. Kassam Z, Yerushalmi L, Guiot S (2003) A market study on the anaerobic waste-water treatment systems. Water Air Soil Pollut 143:179–192

    CAS  Google Scholar 

  24. Deepa S, Anipriya N, Subbulakshmy R (2015) Design of controllers for continuous stirred tank reactor. Int J Power Electron Drive Syst 5(4):576

    Google Scholar 

  25. Jain A, Tayal D, Sehgal N (2013) Brain emotional learning intelligent controller and its application to jacketed continuous stirred tank reactor. Int J Electr Electron Eng Res 3(1):241–248

    Google Scholar 

  26. Liu X, Yan Z, Yue Z (2011) 3.10-Biogas. In: Comprehensive biotechnology. Elsevier, pp 99–114

    Google Scholar 

  27. Mirzoyan N, Tal Y, Gross A (2010) Anaerobic digestion of sludge from intensive recirculating aquaculture systems: review. Aquaculture 306(1–4):1–6

    CAS  Google Scholar 

  28. Marchaim U (1992) Biogas processes for sustainable development. FAO, Rome

    Google Scholar 

  29. Zoutberg GR, Frankin R (1996) Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor: the Biobed EGSB reactor. Water Sci Technol 34:375–381

    CAS  Google Scholar 

  30. Zhang C et al (2017) Effect of parameters on anaerobic digestion EGSB reactor for producing biogas. Proc Eng 205:3749–3754

    Google Scholar 

  31. Seghezzo L et al (1998) A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour Technol 65(3):175–190

    CAS  Google Scholar 

  32. Field J (2002) Anaerobic granular sludge bed technology. http://www.uasb.org/discover/agsb.htm. Accessed 5 Dec 2011

  33. Basitere M et al (2016) Performance of an expanded granular sludge bed (EGSB) reactor coupled with anoxic and aerobic bioreactors for treating poultry slaughterhouse wastewater. Water Pract Technol 11(1):86–92

    Google Scholar 

  34. Xing W et al (2009) Reactor performance and microbial community of an EGSB reactor operated at 20 and 15 C. J Appl Microbiol 107(3):848–857

    CAS  Google Scholar 

  35. Centurion V et al (2018) Anaerobic co-digestion of commercial laundry wastewater and domestic sewage in a pilot-scale EGSB reactor: the influence of surfactant concentration on microbial diversity. Int Biodeterior Biodegradation 127:77–86

    CAS  Google Scholar 

  36. Shan L et al (2017) Performance of CSTR–EGSB–SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis. Environ Sci Pollut Res 24(16):14387–14395

    CAS  Google Scholar 

  37. Ansari S, Alavi J, Yaseen ZM (2018) Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater. Environ Sci Pollut Res 25(34):33978–33991

    CAS  Google Scholar 

  38. Wenta B, Hartman B (2002) Dissolved air flotation system improves wastewater treatment at glatfelter. Pulp Pap 76:43–46

    CAS  Google Scholar 

  39. Lettinga G et al (1980) Use of the upflow sludge blanket (USB) reactor concept for biological waste treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734

    CAS  Google Scholar 

  40. Enitan AM et al (2018) Principal component analysis and characterization of methane community in a full-scale bioenergy producing UASB reactor treating brewery wastewater. Phys Chem Earth Parts A B C

    Google Scholar 

  41. Abbasi T, Abbasi SA (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew Sust Energ Rev 16(3):1696–1708

    CAS  Google Scholar 

  42. Alvarez J et al (2006) Start-up alternatives and performance of an UASB pilot plant treating diluted municipal wastewater at low temperature. Bioresour Technol 97:1640–1649

    CAS  Google Scholar 

  43. Tiwari M et al (2006) Influence of extrinsic factors on granulation in UASB reactor. Appl Microbiol Biotechnol 71:145–154

    CAS  Google Scholar 

  44. Bastone DJ et al (2002) Anaerobic digestion model no. 1 (ADM1). IWA Publication, London

    Google Scholar 

  45. Enitan AM et al (2015) Anaerobic digestion model to enhance treatment of brewery wastewater for biogas production using UASB reactor. Environ Model Assess 20:673–685

    Google Scholar 

  46. Atashi H, Ajamein H, Ghasemian S (2010) Effect of operational and design parameters on removal efficiency of a pilot-scale UASB reactor in a sugar factory world. Appl Sci J 11(4):451–456

    CAS  Google Scholar 

  47. Alcaraz-Ibarra S et al (2020) Treatment of chocolate-processing industry wastewater in a low-temperature pilot-scale UASB: reactor performance and in-situ biogas use for bioenergy recovery. Biomass Bioenergy 142:105786

    CAS  Google Scholar 

  48. Karim M, Moss BL (2017) A preliminary laboratory investigation of methane generation potential from brewery wastewater using UASB reactor. Heighpubs J Civil Environ Eng 1:034–041

    Google Scholar 

  49. Nacheva PM, Pantoja MR, Serrano EA (2011) Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor. Water Sci Technol 63(5):877–884

    CAS  Google Scholar 

  50. Muda K et al (2011) The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater. Water Res 45:4711–4721

    CAS  Google Scholar 

  51. Herumurti W, Isa MH, Kutty SRM (2008) Treatment of pharmaceutical wastewater using mesophilic UASB and hybrid UASB reactors. In: 4th International conference on sustainable water environment: innovative technologies and energy efficient solutions, Singapore, 17–19 November 2008

    Google Scholar 

  52. Demirel B, Scherer P (2008) Production of methabne from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass Bioenergy 32:203–209

    CAS  Google Scholar 

  53. Hampannavar US, Shivayogimath CB (2010) Anaerobic treatment of sugar industry wastewater by Upflow anaerobic sludge blanket reactor at ambient temperature. Int J Environ Sci 1(4):631–639

    CAS  Google Scholar 

  54. Kovacik WPJ et al (2010) Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed. Microbiology 156:2418–2427

    CAS  Google Scholar 

  55. Madukasi EI, Zhang GM (2010) A two bioreactor treating brewery wastewater. Adv Mater Res 113–116:1138–1142

    Google Scholar 

  56. Ritchie H, Roser M (2020) CO2 and greenhouse gas emissions. Published online at OurWorldInData.org. Retrieved from https://ourworldindata.org/emissions-by-sector [Online Resource]

  57. Pan S-Y et al (2015) Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: a review. J Clean Prod 108:409–421

    Google Scholar 

  58. Simate GS et al (2011) The treatment of brewery wastewater for reuse: state of the art. Desalination 273(2–3):235–247

    CAS  Google Scholar 

  59. Tauseef S, Abbasi T, Abbasi S (2013) Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sust Energ Rev 19:704–741

    CAS  Google Scholar 

  60. Srisertpol J et al (2010) Estimation dynamical model of an anaerobic digestion of shrimp culture pond sediment in a biogas process using genetic algorithm. In: Proceedings of the 9th WSEAS international conference on system science and simulation in engineering. World Scientific and Engineering Academy and Society (WSEAS)

    Google Scholar 

  61. Heffernan B, van Lier JB, van der Lubbe J (2011) Performance review of large scale up-flow anaerobic sludge blanket sewage treatment plants. Water Sci Technol 63:100–107

    CAS  Google Scholar 

  62. Yuan H, Zhu N (2016) Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renew Sust Energ Rev 58:429–438

    CAS  Google Scholar 

  63. Mao C et al (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev 45:540–555

    CAS  Google Scholar 

  64. Damyanova S, Beschkov V (2020) Biogas as a source of energy and chemicals. In: Biorefinery concepts. IntechOpen

    Google Scholar 

  65. Bozan M et al (2017) Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass. Appl Microbiol Biotechnol 101(18):6849–6864

    CAS  Google Scholar 

  66. Naik S et al (2010) Characterization of Canadian biomass for alternative renewable biofuel. Renew Energy 35(8):1624–1631

    CAS  Google Scholar 

  67. Grover D, Rao S (2020) Inequality, unemployment, and poverty impacts of mitigation investment: evidence from the CDM in Brazil and implications for a post-2020 mechanism. Clim Pol 20(5):609–625

    Google Scholar 

  68. Grover R, Marwaha SS, Kennedy JF (1999) Studies on the use of an anaerobic baffled reactor for the continuous anaerobic digestion of pulp and paper mill black liquors. Process Biochem 39:653–657

    Google Scholar 

  69. Zheng L et al (2020) Bio-natural gas industry in China: current status and development. Renew Sust Energ Rev 128:109925

    Google Scholar 

  70. CSES (The Centre for Sustainable Environmental Sanitation) (2009) Opportunities for German know-how and CDM application’ – the Chinese biomass sector. In: T.Z.G.G. Deutsche Gesellschaft für, Beijing Office, Sunflower Tower 1100, 37 Maizidian Street, Chaoyang District, 100125 Beijing, PR China and www.gtz.de (ed) CDM perspective in China. The University of Science and Technology, Beijing. http://www.jiko-bmu.de/files/inc/application/pdf/gtz-china_cdm_sector_study-waste_water_0907.pdf

    Google Scholar 

  71. Wen Q et al (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour Technol 100(18):4171–4175

    CAS  Google Scholar 

  72. Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world. Energy Sustain Dev 15(4):347–354

    Google Scholar 

  73. Sharma R et al (2020) Conventional and advanced techniques of wastewater monitoring and treatment. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, pp 1–48

    Google Scholar 

  74. Nguyen QA et al (2020) Total and sustainable utilization of biomass resources: a perspective. Front Bioeng Biotechnol 8:546–546

    Google Scholar 

  75. Dutschke M et al (2006) Risks and chances of combined forestry and biomass projects under the clean development mechanism: UNEP Riso Centre. In Energy, climate and sustainable development. Working paper no. 1, pp 1–14

    Google Scholar 

  76. (NSWAI-ENVIS) National Solid Waste Association of India (2007) Urban municipal solid waste management. New Delhi. www.nswai.com

  77. Malek AA, Hasanuzzaman M, Abd Rahim N (2020) Prospects, progress, challenges and policies for clean power generation from biomass resources. Clean Techn Environ Policy:1–25. https://doi.org/10.1007/s10098-020-01873-4

  78. National Solid Waste Association of India, N-E (2007) Urban municipal solid waste management. New Delhi. www.nswai.com

  79. Carbon Finance For Sustainable Development (CFSD) (2009) The Danish carbon fund participants. Annual report www.carbonfinance.org. http://siteresources.worldbank.org/INTCARBONFINANCE/Resources/11804Final_LR.pdf. Accessed 02 Nov 2012

  80. China, National Bureau of Statistics of China (2013) China statistical yearbook 2013. China Statistics Press, Beijing

    Google Scholar 

  81. Bhatia RK et al (2020) Conversion of waste biomass into gaseous fuel: present status and challenges in India. Bioenergy Res 13:1046–1068

    Google Scholar 

  82. Uglov V et al (2016) On physical properties of nanoparticles: size effect and scale of nanoobjects. Phys Status Solidi C 13(10–12):903–907

    CAS  Google Scholar 

  83. Ogwang JO (2020) An investigation into the optimisation of small scale anaerobic digestion process systems for rural south Africa

    Google Scholar 

  84. Ross WR, Louw JM (1987) Monitoring and control of anaerobic digestion. Water SA 13:193–196

    CAS  Google Scholar 

  85. Fang H, Liu Y (2001) Anaerobic wastewater treatment in (sub-) tropical regions. In: Matsuo T, Hanaki K, Takizawa S, Satoh H (eds) Advances in water and wastewater treatment technology, pp 285–294

    Google Scholar 

  86. Stafford W et al (2013) Technologies for recovery of energy from wastewaters: applicability and potential in South Africa. J Energy South Afr 24:00–00

    Google Scholar 

  87. Mutungwazi A, Mukumba P, Makaka G (2018) Biogas digester types installed in South Africa: a review. Renew Sust Energ Rev 81:172–180

    Google Scholar 

  88. Cloete R (2008) Biogas train on track for completion. In: Engineering news, renewable energy. http://www.talbot.co.za/wp-content/uploads/2012/12/Biogas_train.pdf. Accessed 07 Nov 2013

  89. Energy A (2007) Integrated biogas solutions. www.90x2030.org.za/oid%5Cdownloads%5CAgama%20Biogas%20technology%20and%20applications.pdf. Accessed Nov 2013

  90. van der Merwe C (2007) Cape biogas-to-electricity project up and running. http://www.engineeringnews.co.za/article/cape-biogastoelectricity-project-up-and-running-2007-11-02. Accessed Nov 2013

  91. Mshandete A et al (2005) Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pre-treatment. Water Res 39:1569–1575

    CAS  Google Scholar 

  92. Appels L et al (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energ Combust 34:755–781

    CAS  Google Scholar 

  93. Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley-Interscience, Hoboken, pp 51–57

    Google Scholar 

  94. Schulz S, Conrad R (1996) Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiol 20:1–14

    CAS  Google Scholar 

  95. Keyser M (2006) PCR detection, denaturing gradient gel electrophoresis (DGGE) fingerprinting and identification of the microbial consortium in different types of UASB granules. Department of Food Science, Faculty of AgriSciences, University of Stellenbosch, pp 1–140

    Google Scholar 

  96. Amani T et al (2011) Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. Int J Environ Sci Technol 8(1):83–96

    CAS  Google Scholar 

  97. Mirzoyan N, Tal Y, Gross A (2010) Anaerobic digestion of sludge from intensive recirculating aquaculture systems. Rev Aquacult 306:1–6

    CAS  Google Scholar 

  98. Ahring BK (2003) Biomethanation I and II. Springer, Berlin

    Google Scholar 

  99. Akarsubasi AT et al (2005) Effect of wastewater composition on archaeal population diversity. Water Res 39(8):1576–1584

    CAS  Google Scholar 

  100. Ziemiński K, Frąc M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotechnol 11(18):4127–4139

    Google Scholar 

  101. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M et al (eds) The prokaryotes: volume 3: archaea. Bacteria: firmicutes, actinomycetes. Springer, New York, pp 165–207

    Google Scholar 

  102. Bitton G (1994) Anaerobic digestion of wastewater and sludge. In: Wastewater microbiology. Wiley-Liss

    Google Scholar 

  103. Karakashev D et al (2006) Acetate oxidation is the dominant pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141

    CAS  Google Scholar 

  104. Bapteste É, Brochier C, Boucher Y (2005) Higher-level classification of the archaea: evolution of methanogenesis and methanogens. Archaea 1(5):353–363

    CAS  Google Scholar 

  105. Enitan AM et al (2019) Microbiota of a full-scale UASB reactor treating brewery wastewater using Illumina MiSeq sequencing. Open Microbiol J 13(1):1–9

    CAS  Google Scholar 

  106. Enitan AM et al (2014) Kinetic modelling and characterization of microbial community present in a full-scale UASB reactor treating brewery effluent. Microb Ecol 67(2):358–368

    CAS  Google Scholar 

  107. Anukam AI et al (2020) Improving the understanding of the bonding mechanism of primary components of biomass pellets through the use of advanced analytical instruments. J Wood Chem Technol 40(1):15–32

    CAS  Google Scholar 

  108. Keyser M et al (2006) PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst Appl Microbiol 29(1):77–84

    CAS  Google Scholar 

  109. Fang HHP, Chui H-K, Li Y-Y (1995) Anaerobic degradation of butyrate in a UASB reactor. Bioresour Technol 51(1):75–81

    CAS  Google Scholar 

  110. McHugh S et al (2003) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Biotechnol 2:225–245

    CAS  Google Scholar 

  111. Nakasaki K, Kwon SH, Takemoto Y (2015) An interesting correlation between methane production rates and archaea cell density during anaerobic digestion with increasing organic loading. Biomass Bioenergy 78:17–24

    CAS  Google Scholar 

  112. Tabatabaei M et al (2011) Influential parameters on biomethane generation in anaerobic wastewater treatment plants. Alternative fuel. IntechOpen

    Google Scholar 

  113. Sawyerr N et al (2019) An overview of biogas production: fundamentals, applications and future research. Int J Energy Econ Policy 9(2):105–116

    Google Scholar 

  114. Liu W-T, Chan O-C, Fang HHP (2002) Characterization of microbial community in granular sludge treating brewery wastewater. Water Res 36(7):1767–1775

    CAS  Google Scholar 

  115. Briones A, Raskin L (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14(3):270–276

    CAS  Google Scholar 

  116. Brito J et al (2020) Characterization of eubacterial communities by denaturing gradient gel electrophoresis (DGGE) and next generation sequencing (NGS) in a desulfurization biotrickling filter using progressive changes of nitrate and nitrite as final electron acceptors. New Biotechnol 57:67–75

    CAS  Google Scholar 

  117. Bolzonella D et al (2020) Biological thermophilic post hydrolysis of digestate enhances the biogas production in the anaerobic digestion of agro-waste. Renew Sust Energ Rev 134:110174

    CAS  Google Scholar 

  118. Jantharadej K et al (2020) Identification of sulfate-reducing and methanogenic microbial taxa in anaerobic bioreactors from industrial wastewater treatment plants using next-generation sequencing and gene clone library analyses. J Environ Sci Health A 55:1283–1293

    CAS  Google Scholar 

  119. Owusu-Agyeman I et al (2019) The study of structure of anaerobic granules and methane producing pathways of pilot-scale UASB reactors treating municipal wastewater under sub-mesophilic conditions. Bioresour Technol 290:121733

    CAS  Google Scholar 

  120. Na J-G et al (2016) Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing. Biochem Eng J 112:241–248

    CAS  Google Scholar 

  121. Świątczak P, Cydzik-Kwiatkowska A, Rusanowska P (2017) Microbiota of anaerobic digesters in a full-scale wastewater treatment plant. Arch Environ Prot 43(3):53–60

    Google Scholar 

  122. Tabatabaei M et al (2010) Importance of the methanogenic archaea populations in anaerobic wastewater treatments. Process Biochem 45(8):1214–1225

    CAS  Google Scholar 

  123. Bergmann I et al (2010) Influence of DNA isolation on Q-PCR-based quantification of methanogenic archaea in biogas fermenters. Syst Appl Microbiol 33(2):78–84

    CAS  Google Scholar 

  124. Traversi D et al (2012) Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manag 111:173–177

    CAS  Google Scholar 

  125. Petriglieri F et al (2018) In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS One 13(11):e0206255

    CAS  Google Scholar 

  126. Jupraputtasri W et al (2005) Use of an alternative archaea-specific probe for methanogen detection. J Microbiol Methods 61(1):95–104

    CAS  Google Scholar 

  127. Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424–433

    CAS  Google Scholar 

  128. Park JY, Yoo YJ (2009) Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose. Appl Environ Microbiol 82(3):415–429

    CAS  Google Scholar 

  129. Torres K et al (2019) Intermittent operation of UASB reactors treating wastewater polluted with organic solvents: process performance and microbial community evaluation. Environ Sci Water Res Technol 5(7):1270–1284

    CAS  Google Scholar 

  130. De Vrieze J et al (2018) Terminal restriction fragment length polymorphism is an “old school” reliable technique for swift microbial community screening in anaerobic digestion. Sci Rep 8(1):1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Enitan-Folami, A.M., Swalaha, F.M. (2021). Anaerobic Treatment System: A Sustainable Clean Environment and Future Hope of Renewable Energy Production. In: Nasr, M., Negm, A.M. (eds) Cost-efficient Wastewater Treatment Technologies. The Handbook of Environmental Chemistry, vol 118. Springer, Cham. https://doi.org/10.1007/698_2021_792

Download citation

Publish with us

Policies and ethics